RAS PresidiumВестник Российской академии наук Herald of the Russian Academy of Sciences

  • ISSN (Print) 0869-5873
  • ISSN (Online) 3034-5200

ENGINEERING RECOMBINANT PROTEINS: FROM STRUCTURE TO FUNCTION AND BIOLOGICAL ACTIVITY

PII
S0869587325070063-1
DOI
10.31857/S0869587325070063
Publication type
Review
Status
Published
Authors
Volume/ Edition
Volume / Issue number 7
Pages
55-60
Abstract
The article discusses the development of recombinant protein engineering, primarily artificial proteins or de novo proteins, from the creation of the first proteins with a given spatial structure and biological activity to modern work in this area, which widely uses machine learning and artificial intelligence methods. The use of these methods, in particular the Rozetta and AlphaFold computer platforms, has led to tremendous progress in this area, as evidenced by last year’s Nobel Prize in Chemistry. Currently, these methods should be recommended for use in any modern laboratory conducting work on the physical chemistry of proteins and protein engineering. The article is based on the author’s report at a scientific session of the Division of Biological Sciences of the Russian Academy of Sciences on December 10, 2024.
Keywords
белки белковая инженерия структура и функция белков инженерная биология искусственный интеллект AlphaFold
Date of publication
05.09.2025
Year of publication
2025
Number of purchasers
0
Views
18

References

  1. 1. Долгих Д.А., Федоров А.Н., Чемерис В.В. и др. Получение и исследование альбебетина, искусственного белка с заданной пространственной структурой // Доклады АН. 1991. Т. 320. С. 1266–1269. @@ Dolgikh D.A., Fedorov A.N., Chemeris V.V. et al. Production and study of albebeitin, an artificial protein with a given spatial structure // Reports of the Academy of Sciences. 1991, vol. 320, pp. 1266–1269.
  2. 2. Bychkova V.E., Dolgikh D.A., Balobanov V.A. et al. The Molten Globule State of a Globular Protein in a Cell Is More or Less Frequent Case Rather than an Exception // Molecules. 2022, vol. 27, no. 4361.
  3. 3. Kuhlman B., Dantas G., Ireton G.C. et al. Design of a novel globular protein fold with atomic-level accuracy // Science, 2003, vll. 302, pp. 1364–1368.
  4. 4. Chevalier A., Silva D.-A., Rocklin G.J. et al. Massively parallel de novo protein design for targeted therapeutics // Nature, 2017, vol. 550, pp. 74–79.
  5. 5. Wallace H.M., Yang H., Tan S. et al. De novo design of peptides that bind specific conformers of α-synuclein // Chemical Science, 2024, vol. 15, pp. 8414–8421.
  6. 6. Jumper J., Evans R., Pritzel A. et al. Highly accurate protein structure prediction with AlphaFold // Nature, 2021, vol. 596, pp. 583–589.
  7. 7. Finkelstein A.V., Ivankov D.N. Protein 3D Structure Identification by AlphaFold: a Physics-Based Prediction or Recognition Using Huge Databases? // Journal of Molecular Biology, 2024, vol. 6, pp. 1–10.
  8. 8. Chakravarty D., Porter L.L. AlphaFold2 fails to predict protein fold switching // Protein Science, 2022, vol. 31, e4353.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library