RAS PresidiumВестник Российской академии наук Herald of the Russian Academy of Sciences

  • ISSN (Print) 0869-5873
  • ISSN (Online) 3034-5200

APPLICATION OF ARTIFICIAL INTELLIGENCE METHODS IN MEDICINE

PII
S3034520025080036-1
DOI
10.7868/S3034520025080036
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 95 / Issue number 8
Pages
30-37
Abstract
The prospects for the development of artificial intelligence technologies in the field of medicine are considered. The analysis of trends in the development of artificial intelligence in general and specific issues, such as the analysis and classification of big data, predicting disruption and creating a reliable report using a medical decision support system. The advantages and limitations of machine learning methods in comparison with human expertise are described. The types of tasks for the prospective application of artificial intelligence methods are noted, such as analyzing biometric data flows to identify the patient's condition and modeling the interaction of several drugs.
Keywords
искусственный интеллект полифармакотерапия предиктор разладки функция распределения
Date of publication
15.08.2025
Year of publication
2025
Number of purchasers
0
Views
103

References

  1. 1. Feixiong Cheng, Zhongming Zhao. Machine learning-based prediction of drug–drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties // J. Medicine Information Association, 2014, no. 21, pp. 278–286.
  2. 2. Tengfei Lyu, Jianliang Gao, Ling Tian, Zhao Li et al. A Multimodal Deep Neural Network for Predicting Drug-Drug Interaction Events // Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21), pp. 3536–3542.
  3. 3. Xiang Yue, Zhen Wang, Jingong Huang et al. Graph embedding on biomedical networks: methods, applications and evaluations // Bioinformatics, 2020, no. 36(4), pp. 1241–1251.
  4. 4. Xu Chu, Yang Lin, Yasha Wang et al. A multi-task semi-supervised learning framework for drug-drug interaction prediction. // Proceedings of the International Joint Conference on Artificial Intelligence, 2019, pp. 4518–4524.
  5. 5. Farkas D., Shader R.I., von Moltke L.L., Greenblatt D.J. Mechanisms and consequences of drug-drug interactions. // In: Gad SC, ed. Preclinical Development Handbook: ADME and Biopharmaceutical Properties. Philadelphia: Wiley, 2021.
  6. 6. Марцевич С.Ю., Лукина Ю.В., Драпкина О.М. Основные принципы комбинированной медикаментозной терапии – фокус на межлекарственное взаимодействие // Кардиоваскулярная терапия и профилактика. 2021. № 20(7). С. 3031. @@Martsevich S.Yu., Lukina Yu.V., Drapkina O.M. Basic principles of combination drug therapy – focus on drug interactions // Cardiovascular therapy and prevention. 2021, no. 20(7), p. 3031. (In Russ.)
  7. 7. Huimin Luo, Weijie Yin, Jianlin Wang et al. Drug-drug interactions prediction based on deep learning and knowledge graph: A review // iScience 27, 2024, March, 109148.
  8. 8. Yifan Deng, Xinran Xu, Yang Qiu et al. A multimodal deep learning framework for predicting drug–drug interaction events // Bioinformatics. 2020, no. 36(15), pp. 4316–4322.
  9. 9. Ryu J.Y. et al. (2018) Deep learning improves prediction of drug–drug and drug–food interactions // Proc. Natl. Acad. Sci. USA. 2018, no. 115, pp. E4304–E4311.
  10. 10. Орлов Ю.Н., Сивакова Т.В., Шимановский Н.Л. Ранговая модель оценки рисков полифармакотерапии // Математическое моделирование. 2025. Т. 37. № 2. С. 99–110. @@Orlov Yu.N., Sivakova T.V., Shimanovsky N.L. Rank model for assessing the risks of polypharmacothe­rapy // Mathematical modeling. 2025, vol. 37, no. 2, pp. 99–110. (In Russ.)
  11. 11. Кислицын А.А., Козлова А.Б., Корсакова М.Б., Орлов Ю.Н. Индикатор разладки для нестационарных случайных процессов // Доклады РАН. Cер. Математическая. 2019. Т. 484. № 4. С. 393–396. @@Kislitsyn A.A., Kozlova A.B., Korsakova M.B., Orlov Yu.N. Disorder indicator for non-stationary random processes // Reports of the Russian Academy of Sciences. Series: Mathematical. 2019, vol. 484, no. 4, pp. 393–396. (In Russ.)
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library