RAS PresidiumВестник Российской академии наук Herald of the Russian Academy of Sciences

  • ISSN (Print) 0869-5873
  • ISSN (Online) 3034-5200

APPLICATION OF CAVITATION ON A LASER HEATING ELEMENT IN SURGERY

PII
S0869587325080016-1
DOI
10.31857/S0869587325080016
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 8
Pages
3-14
Abstract
The article discusses the phenomenon of laser cavitation initiated at the tip of an optical fiber immersed in a liquid under the action of continuous laser radiation. The properties of flooded cumulative jets arising from the collapse of cavitation bubbles are investigated. It is shown that in free space, jets transfer heat through a liquid, and in the case of cavitation inside a tube filled with liquid, they lead to an inversion motion of the liquid. The practical use of the identified effects in medicine allows for effective surgical treatment of vascular diseases, cysts, acute and chronic infected wounds.
Keywords
лазер кавитация численное моделирование острые и хронические инфицированные раны коагуляция кист и сосудов
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
27

References

  1. 1. Sinibaldi G., Occhicone A., Alves Pereira F. et al. Laser induced cavitation: Plasma generation and breakdown shockwave // Phys. Fluids. 2019, vol. 31 (10), 103302.
  2. 2. Koch M., Rosselló J.M., Lechner C. et al. Dynamics of a Laser-Induced Bubble above the Flat Top of a Solid Cylinder – Mushroom-Shaped Bubbles and the Fast Jet // Fluids. 2022, vol. 7 (1), 2.
  3. 3. Ohl C.D., Arora M., Dijkink R. et al. Surface cleaning from laser-induced cavitation bubbles // Applied physics letters. 2006, vol. 89, 074102.
  4. 4. Dular M., Požar T., Zevnik J., Petkovšek R. High speed observation of damage created by a collapse of a single cavitation bubble // Wear. 2019, vol. 418–419, pp. 13–23.
  5. 5. Hu J., Dirie N.I., Yang J. et al. Percutaneous Ureteroscopy Laser Unroofing – A Minimally Invasive Approach for Renal Cyst Treatment // Sci. Rep. 2017, vol. 7, 14445.
  6. 6. Dowlatshahi K., Francescatti D.S., Bloom K.J. Laser Therapy for Small Breast Cancers // Am. J. Surg. 2002, vol. 184, pp. 359–363.
  7. 7. Tontini G.E., Neumann H., Pastorelli L. et al. Thulium Laser in Interventional Endoscopy: Animal and Human Studies // Endoscopy. 2017, vol. 49, pp. 365–370.
  8. 8. Беликов А.В. Оптотермические волоконные конвертеры для лазерной медицины. СПб: Университет ИТМО, 2020. @@Belikov A.V. Optothermal fiber converters for laser medicine. St. Petersburg: ITMO University, 2020. (In Russ.)
  9. 9. Yusupov V.I., Chudnovskii V.M., Bagratashvili V.N. Laser-induced hydrodynamics in water and biotissues nearby optical fiber tip // INTECH Open Access Publisher. 2011, pp. 95−118. DOI: 10.13140/2.1.4838.9122.
  10. 10. Yusupov V.I., Chudnovskii V.M., Bagratashvili V.N. Laser-induced hydrodynamics in water-saturated biotissues. 1. Generation of bubbles in liquid // Laser Physics. 2010, vol. 20, no. 7, pp. 1641–1646.
  11. 11. Kulik A.V., Mokrin S.N., Kraevskii A.M. et al. Features of dynamics of a jet flow generated on a laser heater by surface boiling of liquid // Technical Physics Letters. 2022, vol. 48, no. 1, pp. 60–63.
  12. 12. Mokrin S.N., Tereshko D.A., Kulik A.V. et al. Selective Laser Heating of Closed Cavity Shells Filled with Liquid // Doklady Physics. 2022, vol. 67, no. 12, pp. 491–494.
  13. 13. Mokrin S.N., Tereshko D.A., Kulik A.V. et al. Physical mechanisms of laser thermotherapy of cysts // Heat Transfer Research. 2023, vol. 54 (4), pp. 11–24.
  14. 14. Чудновский В.М., Гузев М.А., Дац Е.П., Кулик А.В. Эффект ускоренного всасывания жидкости в трубке при лазерной кавитации на лазерном нагревательном элементе // Доклады РАН. Физика, технические науки. 2023. Т. 513. С. 41–47. @@Chudnovskii V.M., Guzev M.A., Dats E.P., Kulik A.V. The effect of accelerated absorption of liquid in a tube during laser cavitation on a laser heating element // Reports of the Russian Academy of Sciences. Physics, Technical Sciences. 2023, vol. 513, pp. 41–47. (In Russ.)
  15. 15. Гузев М.А., Василевский Ю.В., Дац Е.П. и др. Лазерная кавитация в трубке, погружённой в ограниченный объём, заполненный жидкостью // Доклады РАН. Физика, технические науки. 2024. Т. 519. С. 19–25. @@Guzev M.A., Vassilevski Yu.V., Dats E.P. et al. Laser cavitation in a tube immersed in a confined volume filled with liquid // Reports of the Russian Academy of Sciences. Physics, Technical Sciences. 2023, vol. 519, pp. 19–25. (In Russ.)
  16. 16. Abushkin I.A., Privalov V.A., Lappa A.V., Minaev V.P. Fiber 1.56–1.9 μm lasers in treatment of vascular malformations in children and adults Progress in Biomedical Optics and Imaging // Proceedings of SPIE. 2013, vol. 8565, 85650V.
  17. 17. Meire M., De Moor R.J.G. Principle and antimicrobial efficacy of laser-activated irrigation: A narrative review // International Endodontic Journal. 2024, no. 7 (57), pp. 841–860.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library