Microbial regulation of human colon immune homeostasis
Table of contents
Share
QR
Metrics
Microbial regulation of human colon immune homeostasis
Annotation
PII
S0869587325020095-1
Publication type
Article
Status
Published
Authors
O. V. Bukharin 
Occupation: Academician of the Russian Academy of Sciences, Scientific Director
Affiliation: Institute for Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences
E. V. Ivanova
Occupation: Doctor of Medical Sciences, Head of the Laboratory of Infectious Symbiology
Affiliation: Institute for Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences
I. N. Chaynikova
Occupation: Doctor of Medical Sciences, Leading Researcher at the Laboratory of Infectious Symbiology
Affiliation: Institute for Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences
Pages
85-93
Abstract
The article presents a fresh look at the role of the intestinal microbiota in symbiosis with the human body. The study of the “microbe–host” system in the framework of infectious symbiology allowed us to establish that intestinal bacteria regulate and maintain the immune homeostasis of the large intestine with the help of their metabolites. Thus, it became possible to control the immune homeostasis of the large intestine through exposure to associations of microsymbionts capable of altering the cytokine status and response of innate immunity. Multicomponent associations of microsymbionts of the large intestine have been established, which under conditions of eubiosis maintain a balanced profile of pro- and anti-inflammatory cytokines. In dysbiosis, an increased number of associations of opportunistic pathogens leads to a shift in the balance towards pro-inflammatory cytokines and an increase in the level of antimicrobial proteins in the intestine. The multidirectional effects on cytokine production of extracellular metabolites of microsymbionts isolated during eubiosis and dysbiosis can serve as the basis for the selection of strains with anti-inflammatory activity.
Keywords
кишечная микробиота метаболиты бактерий цитокиновый профиль эффекторы врождённого иммунитета пробиотические штаммы
Received
27.04.2025
Number of purchasers
0
Views
18
Readers community rating
0.0 (0 votes)
Cite   Download pdf

References

1. Бухарин О.В., Лобакова Е.С., Перунова Н.Б. и др. Симбиоз и его роль в инфекции: монография / Под ред. О.В. Бухарина. Екатеринбург: УрО РАН, 2011.

2. Bukharin O.V., Lobakova E.S., Perunova N.B. et al. Symbiosis and its role in infection: monograph / Ed. by O.V. Bukharin. Ekaterinburg: Ural Branch of the RAS, 2011. (In Russ.)

3. Бухарин О.В. Симбиоз – биологическая основа инфекции // Вестник Московского университета. Серия 16. Биология. 2019. № 1. С. 7–14.

4. Bukharin O.V. Symbiosis – the biological basis of infection // Bulletin of Moscow University. Series 16. Biology. 2019, no. 1, pp. 7–14. (In Russ.)

5. Manos J. The human microbiome in disease and pathology // APMIS. 2022, vol. 130 (12), pp. 690–705.

6. Lee J.Y., Tsolis R.M., Bäumler A.J. The microbiome and gut homeostasis // Science. 2022, vol. 377 (6601), eabp9960.

7. Zuccaro V., Ponziani F.R., Bruno R. Editorial of Special Issues “Gut Microbiota-Host Interactions: From Symbiosis to Dysbiosis 2.0” // Int. J. Mol. Sci. 2023, vol. 24 (10), 8977.

8. Peterson L.W., Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis // Nat. Rev. Immunol. 2014, vol. 14 (3), pp. 141–153.

9. Camara-Lemarroy C.R., Metz L., Meddings J.B. et al. The intestinal barrier in multiple sclerosis: implications for pathophysiology and therapeutics // Brain. 2018, vol. 141 (7), pp. 1900–1916.

10. Бухарин О.В., Лобакова Е.С., Немцева Н.В., Черкасов С.В. Ассоциативный симбиоз. Екатеринбург: УрО РАН, 2007.

11. Bukharin O.V., Lobakova E.S., Nemtseva N.V., Cherkasov S.V. Associative symbiosis. Ekaterinburg: Ural Branch of the RAS, 2007. (In Russ.)

12. Бухарин О.В., Иванова Е.В., Перунова Н.Б., Никифоров И.А. Функциональные группы бифидофлоры кишечной микробиоты в ассоциативном симбиозе человека // Журнал микробиологии, эпидемиологии и иммунобиологии. 2018. № 1. С. 3–9.

13. Bukharin O.V., Ivanova E.V., Perunova N.B., Nikiforov I.A. Functional groups of bifidoflora of intestinal microbiota in associative symbiosis of humans // Journal of Microbiology, Epidemiology and Immunobiology. 2018, no. 1, pp. 3–9. (In Russ.)

14. Бухарин О.В., Иванова Е.В, Перунова Н.Б. Коренные штаммы бифидобактерий кишечника человека: индигенность через призму персистенции // Вестник РАН. 2023. № 11. С. 1071–1080.

15. Bukharin O.V., Ivanova E.V., Perunova N.B. Native Strains of Human Intestinal Bifidobacteria: Indigeneity Through the Prism of Persistence // Herald of the Russian Academy of Sciences. 2023, no. 11, pp. 1071–1080. (In Russ.)

16. Бухарин О.В., Иванова Е.В, Перунова Н.Б., Чайникова И.Н. Роль бифидобактерий в формировании иммунного гомеостаза человека // Журнал микробиологии, эпидемиологии и иммунобиологии. 2015. № 6. С. 98–104.

17. Bukharin O.V., Ivanova E.V., Perunova N.B., Chainikova I.N. The role of bifidobacteria in the formation of human immune homeostasis // Journal of Microbiology, Epidemiology and Immunobiology. 2015, no. 6, pp. 98–104. (In Russ.)

18. Кетлинский С.А., Симбирцев А.С. Цитокины. СПб.: Фолиант, 2008.

19. Ketlinsky S.A., Simbirtsev A.S. Cytokines. St. Petersburg: Foliant, 2008. (In Russ.)

20. Caffaratti C., Plazy C., Mery G. et al. What we know so far about the metabolite-mediated microbiota-intestinal immunity dialogue and how to hear the sound of this crosstalk // Metabolites. 2021, vol. 11 (6), pp. 1–37.

21. Булгакова И.Д., Свитич О.А., Зверев В.В. Механизмы формирования толерантности Toll-подобных рецепторов под действием микробных лигандов // Журнал микробиологии, эпидемиологии и иммунобиологии. 2022. № 6. C. 708–721.

22. Bulgakova I.D., Svitich O.A., Zverev V.V. Mechanisms of Toll-like Receptor Tolerance Formation under the Action of Microbial Ligands // Journal of Microbiology, Epidemiology and Immunobiology. 2022, no. 6, pp. 708–721. (In Russ.)

23. Климович В.Б. Актуальные проблемы эволюционной иммунологии // Журнал эволюционной биохимии и физиологии. 2002. № 5. С. 442–451.

24. Klimovich V.B. Actual problems of evolutionary immunology // Journal of Evolutionary Biochemistry and Physiology. 2002, no. 5, pp. 442–451. (In Russ.)

25. Киселёва Е.П. Акцептивный иммунитет – основа симбиотических взаимоотношений // Инфекция и иммунитет. 2015. № 2. С. 113–130.

26. Kiseleva E.P. Acceptive immunity – the basis of symbiotic relationships // Infection and immunity. 2015, no. 2, pp. 113–130. (In Russ.)

27. Wells J.M., Brummer R.J., Derrien M. et al. Homeostasis of the Gut Barrier and Potential Biomarkers // Am. J. Physiol. Gastr. Liver Physiol. 2017, vol. 312, pp. 171–193.

28. Wan T., Wang Y., He K., Zhu S. Microbial sensing in the intestine // Protein & Cell. 2023, vol. 14 (11), pp. 824–860.

29. Travis M.A., Romagnani C. How regulatory T-cells are primed to aid tolerance of gut bacteria // Nature. 2022, vol. 610 (7933), pp. 638–640.

30. Li D., Wu M. Pattern recognition receptors in health and diseases // Signal Transduct. Target Ther. 2021, vol. 6 (1), 291.

31. Kawai T., Ikegawa M., Ori D., Akira S. Decoding Toll-like receptors: Recent insights and perspectives in innate immunity // Immunity. 2024, vol. 57 (4), рр. 649–673.

32. Huus K.E., Petersen C., Finlay B.B. Diversity and dynamism of IgA-microbiota interactions // Nat. Rev. Immunol. 2021, vol. 21 (8), pp. 514–525.

33. Nakajima A., Vogelzang A., Maruya M. et al. IgA regulates the composition and metabolic function of gut microbiota by promoting symbiosis between bacteria // J. Exp. Med. 2018, vol. 215 (8), рр. 2019–2034.

34. Grasset E.K., Chorny A., Casas-Recasens S. et al. Gut T cell-independent IgA responses to commensal bacteria require engagement of the TACI receptor on B cells // Sci Immunol. 2020, vol. 5 (49), eaat7117.

35. Traxinger B.R., Richert-Spuhler L.E., Lund J.M. Mucosal tissue regulatory T cells are integral in balancing immunity and tolerance at portals of antigen entry // Mucosal Immunol. 2022, vol. 15, рр. 398–407.

36. Sun C.Y., Yang N., Zheng Z.L. et al. T helper 17 (Th17) cell responses to the gut microbiota in human diseases // Biomed Pharmacother. 2023, vol. 161, 114483.

37. Tremaroli V., Bäckhed F. Functional interactions between the gut microbiota and host metabolism // Nature. 2012, vol. 489, no. 13, pp. 242–249.

38. Wang G., Huang S., Wang Y. et al. Bridging intestinal immunity and gut microbiota by metabolites // Cell. Mol. Life Sci. 2019, vol. 76, no. 20, pp. 3917–3937.

39. Yoo J.Y., Groer M., Dutra S.V.O. et al. Gut Microbiota and Immune System Interactions // Microorganisms. 2020, vol. 8, no. 10, p. 1587.

40. Archer D., Perez-Muñoz M.E., Tollenaar S. et al. The importance of the timing of microbial signals for perinatal immune system development // Microbiome Res. Rep. 2023, vol. 2 (2), 11.

41. Zheng D., Liwinski T., Elinav E. Interaction between microbiota and immunity in health and disease // Cell. Res. 2020, vol. 30, рр. 492–506.

42. Pekmez C.T., Dragsted L.O., Brahe L.K. Gut microbiota alterations and dietary modulation in childhood malnutrition – The role of short chain fatty acids // Clin. Nutr. 2019, vol. 38, pp. 615–630.

43. Hays K.E., Pfaffinger J.M., Ryznar R. The interplay between gut microbiota, short-chain fatty acids, and implications for host health and disease // Gut microbes. 2024, vol. 16 (1), pp. 239–270.

44. Konieczna P., Ferstl R., Ziegler M. Immunomodulation by Bifidobacterium infantis 35624 in the murine lamina propria requires retinoic acid-dependent and independent mechanisms // PLoS One. 2013, vol. 8, no. 5, e62617.

45. Бондаренко Т.А., Иванова Е.В., Бекпергенова А.В. и др. Связь цитокинов и численности микросимбионтов при микроэкологических нарушениях кишечника человека // Российский иммунологический журнал. 2022. № 2. С. 125–130.

46. Bondarenko T.A., Ivanova E.V., Bekpergenova A.V. et al. The relationship between cytokines and the number of microsymbionts in microecological disorders of the human intestine // Russian Journal of Immunology. 2022, no. 2, pp. 125–130. (In Russ.)

47. Чайникова И.Н., Иванова Е.В., Бондаренко Т.А. и др. Влияние цитокинов на биоплёнкообразование кишечных микросимбионтов // Российский иммунологический журнал. 2019. № 2. С. 626–627.

48. Chainikova I.N., Ivanova E.V., Bondarenko T.A. et al. The influence of cytokines on biofilm formation of intestinal microsymbionts // Russian Journal of Immunology. 2019, no. 2, pp. 626–627. (In Russ.)

49. Иванова Е.В., Бондаренко Т.А., Чайникова И.Н., Бухарин О.В. Влияние метаболитов микросимбионтов кишечника человека на продукцию оксида азота перитонеальными макрофагами // Российский иммунологический журнал. 2017. № 2. С. 338–340.

50. Ivanova E.V., Bondarenko T.A., Chainikova I.N., Bukharin O.V. The influence of metabolites of human intestinal microsymbionts on the production of nitric oxide by peritoneal macrophages // Russian Journal of Immunology. 2017, no. 2, pp. 338–340. (In Russ.)

51. Бухарин О.В., Чайникова И.Н., Иванова Е.В. и др. Иммунорегуляторный профиль микросимбионтов кишечного биотопа человека // Журнал микробиологии, эпидемиологии и иммунобиологии. 2018. № 4. С. 42–51.

52. Bukharin O.V., Chainikova I.N., Ivanova E.V. et al. Immunoregulatory profile of microsymbionts of the human intestinal biotope // Journal of Microbiology, Epidemiology and Immunobiology. 2018, no. 4, pp. 42–51. (In Russ.)

53. Бухарин О.В., Иванова Е.В., Чайникова И.Н. и др. Влияние кишечных микросимбионтов на продукцию цитокинов в системе in vitro // Медицинская иммунология. 2023. № 6. С. 1359–1376.

54. Bukharin O.V., Ivanova E.V., Chainikova I.N. et al. The influence of intestinal microsymbionts on the production of cytokines in the in vitro system // Medical Immunology. 2023, no. 6, pp. 1359–1376. (In Russ.)

Comments

No posts found

Write a review
Translate