Президиум РАНВестник Российской академии наук / Herald of the Russian Academy of Sciences

  • ISSN (Print) 0869-5873
  • ISSN (Online)3034-5200

Технологии тепловой защиты ракетных двигателей твёрдого топлива

Код статьи
S0869587324070083-1
DOI
10.31857/S0869587324070083
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 94 / Номер выпуска 7
Страницы
677-687
Аннотация
В статье анализируются теплоизолирующие свойства материалов, которые используются в ракетных двигателях твёрдого топлива, производимых в США, Франции, Италии, Японии и других развитых странах. Внутренние поверхности камер сгорания ракетных двигателей подвержены наибольшему напряжению с точки зрения условий термомеханического нагружения и требуют особой защиты. Авторы выделяют четыре класса армированных эластомерных материалов, наиболее полно удовлетворяющих предъявляемым высоким требованиям. Благодаря многообразию выполняемых функций такие материалы могут служить универсальными теплоизоляторами, готовыми к использованию в различных высокотемпературных и агрессивных средах.
Ключевые слова
ракетный двигатель система скрепления теплозащитный экран абляция коксовый остаток
Дата публикации
01.08.2025
Всего подписок
0
Всего просмотров
92

Библиография

  1. 1. Maurizio N., Kenny J.M., Torre L. Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: A review // Progress in Materials Science. 2016, vol. 84, pp. 192–275. http://dx.doi.org/10.1016/j.pmatsci.2016.08.003
  2. 2. Sutton P., Biblarz O. Rocket propulsion elements. Wiley-IEEE, 2000, pp. 268–340. https://www.academia.edu/4465796/Rocket_Propulsion_Elements_Seventh_Edition
  3. 3. Donskoy A.A. Elastomeric heat-shielding materials for internal surfaces of missile engines // Zaikov G.E, ed. New approaches to polymer materials. Nova Publishers, 1995, pp. 93–124. http://dx.doi.org/10.1080/00914039608029377
  4. 4. Bhuvaneswari C.M., Sureshkumar M.S., Kakade S.D. and Gupta M. (2006). Ethylene-propylene diene rubber as a futuristic elastomer for insulation of solid rocket motors // Defence Science Journal. 2006, vol. 56, no. 3, pp. 309–320. https://core.ac.uk/download/pdf/333720277.pdf 10.14429/dsj.56.1894
  5. 5. Rheeder A. Development and Evaluation of Thermal Protection Material for Solid Rocket Motors / April 2022. https://scholar.sun.ac.za/items/6d7ea1f8-d027-4198-abfb-0dbbbbc1ab94
  6. 6. Губертов А.М., Миронов В.В., Волкова Л.И. и др. Газодинамические и теплофизические процессы в ракетных двигателях твёрдого топлива / Под ред. А.С. Коротеева. М.: Машиностроение, 2004.
  7. 7. Rogowski G.S., Davidson T.F., Ludlow T. Insulating liner for solid rocket motor containing vulcanizable elastomer and a bond promoter, which is a novolac epoxy or a resole, treated cellulose. https://patents.google.com/patent/US4956397A/en
  8. 8. Kesiya G., Panda V., Mohanty S., Nayak S. Recent developments in elastomeric heat shielding materials for solid rocket motor casing application for future perspective // Polym. Adv. Technol. 2019, vol. 29, pp. 8–21.
  9. 9. Amado J.C.Q., Ross P.G., Sanches N.B. et al. Evaluation of elastomeric heat shielding materials as insulators for solid propellant rocket motors: A short review // The Open Chemistry Journal. 2020, vol. 18, pp. 1452–1467. https://doi.org/10.1515/chem-2020-0182
  10. 10. Нестеров Б.А., Ворожцов К.В. Технология изготовления внутреннего теплозащитного покрытия с тканевым защитно-крепящим слоем металлического корпуса ракетного двигателя твёрдого топлива // Вестник ПНИПУ. Аэрокосмическая техника. 2015. № 40. DOI: 10.15593/2224-9982/2015.40.10
  11. 11. Нестеров С.В., Бакирова И.Н., Самуилов Я.Д. Термическая и термоокислительная деструкция полиуретанов: механизмы протекания. Факторы влияния и основные методы повышения термической стабильности. Обзор по материалам отечественных и зарубежных публикаций // Вестник Казанского технологического университета. 2011. № 14. https://cyberleninka.ru/article/n/termicheskaya-i-termookislitelnaya-destruktsiya-poliuretanov-mehanizmy-protekaniya-faktory-vliyaniya-i-osnovnye-metody-povysheniya?ysclid=lo4doqlika765444594
  12. 12. Maurizio N., Rallini M., Puglia D. et al. EPDM based heat shielding materials for solid rocket motors: A comparative study of different fibrous reinforcements // Polym. Degrad. Stabil. 2013, vol. 98(11), pp. 2131–2139. http://dx.doi.org/10.1016/j.polymdegradstab.2013.09.006
  13. 13. Kesiya G., Panda V., Mohanty S., Nayak S. Recent developments in elastomeric heat shielding materials for solid rocket motor casing application for future perspective // Polym. Adv. Technol. 2017, vol. 29(11), pp. 1–14. https://doi.org/10.1002/pat.4101
  14. 14. Hongjian Qu, Le Wang, Kun Hui et al. Enhancing Thermal Insulation of EPDM Ablators via Constructing Alternating Planar Architectures. // Polymers 2022, vol. 14, article number 1570. https://doi.org/10.3390/polym14081570
  15. 15. Ahmed A.F., Hoa S.V. Thermal insulation by heat resistant polymers for solid rocket motor insulation // J. Compos. Mater. 2012, vol. 46, pp. 1549–1559. DOI: 10.1177/0021998311418850
  16. 16. Guillot D.G., Harvey A.R. EPDM Rocket Motor Insulation. arXiv:1011.1669v3. US 7,371,784 B2. https://ntrs.nasa.gov/citations/20080025653
  17. 17. Sutton P., Biblarz O. Rocket propulsion elements. Wiley-IEEE, 2000. pp. 474–518. https://www.academia.edu/4465796/Rocket_Propulsion_Elements_Seventh_Edition
  18. 18. Prasertsri S., Amnuay P., Sripan K., Nuinu P. Role of hydroxyl-terminated polybutadiene in changing properties of EPDM/ ENR blends // Adv. Mat. Res. 2013, vol. 844, pp. 349–352. http://dx.doi.org/10.4028
  19. 19. Harvey A.R. et al. Rocket motor insulation containing hydrophobic particles. Patent no. WO 01/04198; 2001. https://patents.google.com/patent/US6606852B1/en
  20. 20. Mosa M., Kotb M.M., Fouda H., Gobara M. Study of Elastomeric Heat Shielding Materials for Solid Rocket Motor Insulation/International Conference on Chemical and Environmental Engineering (ICEE-11) // Journal of Physics: Conference Series. 2022, vol. 2035(1), article number 012037. doi:10.1088/1742-6596/2305/1/012037
  21. 21. Dong Zh., Wei L., Yucai Sh. et al. Improved Self-Supporting and Ceramifiable Properties of Ceramifiable EPDM Composites by Adding Aramid Fiber // Polymers. 2020, vol. 12, p. 1523. http://dx.doi.org/10.3390/polym12071523
  22. 22. Gajiwala M.H., Hall B.S. Precursor compositions for an insulation, insulated rocket motors, and related methods, EP 3375817 (A1). Plymouth, MN 55442 (US): Orbital ATK, Inc.; 2018. https://patents.google.com/patent/EP3375817A1/en
  23. 23. Wu S. et al. EPDM-based heat-shielding materials modified by hybrid elastomers of silicone or polyphosphazene // High Perform. Polym. 2019, vol. 31(9–10), pp. 1112–1121. doi: 10.1177/0954008318824861.
  24. 24. Stephens W.D., Salter C.L., Hodges G.K. et al. Rubber binder, fiber filler, submicroscopic particulate water source. US patent no. 5830384; 1998.
  25. 25. Donskoy A.A. Elastomeric heat shielding materials for internal surfaces of missile engines // Int. J. Polym. Mater. 1996, vol. 31, pp. 215–236. http://dx.doi.org/10.1080/00914039608029377
  26. 26. Yang D., Zhang W., Jiang B., Guo Y. Silicone rubber ablative composites improved with zirconium carbide or zirconia // Composites Part A. 2013, vol. 44, pp. 70–77. http://dx.doi.org/10.1016/j.compositesa.2012.09.002
  27. 27. Ji Y., Han S., Chen Z., Wu H. et al. Understanding the Role of Carbon Fiber Skeletons in Silicone Rubber-Based Ablative Composites // Polymers. 2022, vol. 14, p. 268. https://doi.org/10.3390/polym14020268
  28. 28. Lee J. Flammability studies of thermoplastic polyurethane elastomer nanocomposites. 50th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference; 2019. doi: 10.2514/6.2009-2544
  29. 29. Schiariti D, Bellomi P. Inner coating layer for solid propellant rocket engines/United States Patent. US 11,473,529 B2; Oct. 18, 2022. https://patentimages.storage.googleapis.com/10/47/e0/1b4f495a3af05e/US11473529.pdf
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека