Технологии тепловой защиты ракетных двигателей твёрдого топлива
Технологии тепловой защиты ракетных двигателей твёрдого топлива
Аннотация
Код статьи
S0869587324070083-1
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Миронов Вадим Всеволодович  
Должность: доктор технических наук, заместитель генерального директора по средствам выведения, начальник отделения
Аффилиация: Государственный научный центр Российской Федерации “Исследовательский центр имени М.В. Келдыша”
Толкач Михаил Александрович
Должность: кандидат технических наук, ведущий научный сотрудник
Аффилиация: Государственный научный центр Российской Федерации “Исследовательский центр имени М.В. Келдыша”
Тимаров Алексей Георгиевич
Должность: кандидат технических наук, ведущий научный сотрудник, доцент
Аффилиация:
Государственный научный центр Российской Федерации “Исследовательский центр имени М.В. Келдыша”
Московский авиационный институт (научно-исследовательский университет)
Страницы
677-687
Аннотация
В статье анализируются теплоизолирующие свойства материалов, которые используются в ракетных двигателях твёрдого топлива, производимых в США, Франции, Италии, Японии и других развитых странах. Внутренние поверхности камер сгорания ракетных двигателей подвержены наибольшему напряжению с точки зрения условий термомеханического нагружения и требуют особой защиты. Авторы выделяют четыре класса армированных эластомерных материалов, наиболее полно удовлетворяющих предъявляемым высоким требованиям. Благодаря многообразию выполняемых функций такие материалы могут служить универсальными теплоизоляторами, готовыми к использованию в различных высокотемпературных и агрессивных средах.
Ключевые слова
ракетный двигатель система скрепления теплозащитный экран абляция коксовый остаток
Классификатор
Получено
29.09.2024
Всего подписок
0
Всего просмотров
28
Оценка читателей
0.0 (0 голосов)
Цитировать   Скачать pdf

Библиография

1. Maurizio N., Kenny J.M., Torre L. Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: A review // Progress in Materials Science. 2016, vol. 84, pp. 192–275. http://dx.doi.org/10.1016/j.pmatsci.2016.08.003

2. Sutton P., Biblarz O. Rocket propulsion elements. Wiley-IEEE, 2000, pp. 268–340. https://www.academia.edu/4465796/Rocket_Propulsion_Elements_Seventh_Edition

3. Donskoy A.A. Elastomeric heat-shielding materials for internal surfaces of missile engines // Zaikov G.E, ed. New approaches to polymer materials. Nova Publishers, 1995, pp. 93–124. http://dx.doi.org/10.1080/00914039608029377

4. Bhuvaneswari C.M., Sureshkumar M.S., Kakade S.D. and Gupta M. (2006). Ethylene-propylene diene rubber as a futuristic elastomer for insulation of solid rocket motors // Defence Science Journal. 2006, vol. 56, no. 3, pp. 309–320. https://core.ac.uk/download/pdf/333720277.pdf 10.14429/dsj.56.1894

5. Rheeder A. Development and Evaluation of Thermal Protection Material for Solid Rocket Motors / April 2022. https://scholar.sun.ac.za/items/6d7ea1f8-d027-4198-abfb-0dbbbbc1ab94

6. Губертов А.М., Миронов В.В., Волкова Л.И. и др. Газодинамические и теплофизические процессы в ракетных двигателях твёрдого топлива / Под ред. А.С. Коротеева. М.: Машиностроение, 2004.

7. Rogowski G.S., Davidson T.F., Ludlow T. Insulating liner for solid rocket motor containing vulcanizable elastomer and a bond promoter, which is a novolac epoxy or a resole, treated cellulose. https://patents.google.com/patent/US4956397A/en

8. Kesiya G., Panda V., Mohanty S., Nayak S. Recent developments in elastomeric heat shielding materials for solid rocket motor casing application for future perspective // Polym. Adv. Technol. 2019, vol. 29, pp. 8–21.

9. Amado J.C.Q., Ross P.G., Sanches N.B. et al. Evaluation of elastomeric heat shielding materials as insulators for solid propellant rocket motors: A short review // The Open Chemistry Journal. 2020, vol. 18, pp. 1452–1467. https://doi.org/10.1515/chem-2020-0182

10. Нестеров Б.А., Ворожцов К.В. Технология изготовления внутреннего теплозащитного покрытия с тканевым защитно-крепящим слоем металлического корпуса ракетного двигателя твёрдого топлива // Вестник ПНИПУ. Аэрокосмическая техника. 2015. № 40. DOI: 10.15593/2224-9982/2015.40.10

11. Нестеров С.В., Бакирова И.Н., Самуилов Я.Д. Термическая и термоокислительная деструкция полиуретанов: механизмы протекания. Факторы влияния и основные методы повышения термической стабильности. Обзор по материалам отечественных и зарубежных публикаций // Вестник Казанского технологического университета. 2011. № 14. https://cyberleninka.ru/article/n/termicheskaya-i-termookislitelnaya-destruktsiya-poliuretanov-mehanizmy-protekaniya-faktory-vliyaniya-i-osnovnye-metody-povysheniya?ysclid=lo4doqlika765444594

12. Maurizio N., Rallini M., Puglia D. et al. EPDM based heat shielding materials for solid rocket motors: A comparative study of different fibrous reinforcements // Polym. Degrad. Stabil. 2013, vol. 98(11), pp. 2131–2139. http://dx.doi.org/10.1016/j.polymdegradstab.2013.09.006

13. Kesiya G., Panda V., Mohanty S., Nayak S. Recent developments in elastomeric heat shielding materials for solid rocket motor casing application for future perspective // Polym. Adv. Technol. 2017, vol. 29(11), pp. 1–14. https://doi.org/10.1002/pat.4101

14. Hongjian Qu, Le Wang, Kun Hui et al. Enhancing Thermal Insulation of EPDM Ablators via Constructing Alternating Planar Architectures. // Polymers 2022, vol. 14, article number 1570. https://doi.org/10.3390/polym14081570

15. Ahmed A.F., Hoa S.V. Thermal insulation by heat resistant polymers for solid rocket motor insulation // J. Compos. Mater. 2012, vol. 46, pp. 1549–1559. DOI: 10.1177/0021998311418850

16. Guillot D.G., Harvey A.R. EPDM Rocket Motor Insulation. arXiv:1011.1669v3. US 7,371,784 B2. https://ntrs.nasa.gov/citations/20080025653

17. Sutton P., Biblarz O. Rocket propulsion elements. Wiley-IEEE, 2000. pp. 474–518. https://www.academia.edu/4465796/Rocket_Propulsion_Elements_Seventh_Edition

18. Prasertsri S., Amnuay P., Sripan K., Nuinu P. Role of hydroxyl-terminated polybutadiene in changing properties of EPDM/ ENR blends // Adv. Mat. Res. 2013, vol. 844, pp. 349–352. http://dx.doi.org/10.4028

19. Harvey A.R. et al. Rocket motor insulation containing hydrophobic particles. Patent no. WO 01/04198; 2001. https://patents.google.com/patent/US6606852B1/en

20. Mosa M., Kotb M.M., Fouda H., Gobara M. Study of Elastomeric Heat Shielding Materials for Solid Rocket Motor Insulation/International Conference on Chemical and Environmental Engineering (ICEE-11) // Journal of Physics: Conference Series. 2022, vol. 2035(1), article number 012037. doi:10.1088/1742-6596/2305/1/012037

21. Dong Zh., Wei L., Yucai Sh. et al. Improved Self-Supporting and Ceramifiable Properties of Ceramifiable EPDM Composites by Adding Aramid Fiber // Polymers. 2020, vol. 12, p. 1523. http://dx.doi.org/10.3390/polym12071523

22. Gajiwala M.H., Hall B.S. Precursor compositions for an insulation, insulated rocket motors, and related methods, EP 3375817 (A1). Plymouth, MN 55442 (US): Orbital ATK, Inc.; 2018. https://patents.google.com/patent/EP3375817A1/en

23. Wu S. et al. EPDM-based heat-shielding materials modified by hybrid elastomers of silicone or polyphosphazene // High Perform. Polym. 2019, vol. 31(9–10), pp. 1112–1121. doi: 10.1177/0954008318824861.

24. Stephens W.D., Salter C.L., Hodges G.K. et al. Rubber binder, fiber filler, submicroscopic particulate water source. US patent no. 5830384; 1998.

25. Donskoy A.A. Elastomeric heat shielding materials for internal surfaces of missile engines // Int. J. Polym. Mater. 1996, vol. 31, pp. 215–236. http://dx.doi.org/10.1080/00914039608029377

26. Yang D., Zhang W., Jiang B., Guo Y. Silicone rubber ablative composites improved with zirconium carbide or zirconia // Composites Part A. 2013, vol. 44, pp. 70–77. http://dx.doi.org/10.1016/j.compositesa.2012.09.002

27. Ji Y., Han S., Chen Z., Wu H. et al. Understanding the Role of Carbon Fiber Skeletons in Silicone Rubber-Based Ablative Composites // Polymers. 2022, vol. 14, p. 268. https://doi.org/10.3390/polym14020268

28. Lee J. Flammability studies of thermoplastic polyurethane elastomer nanocomposites. 50th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference; 2019. doi: 10.2514/6.2009-2544

29. Schiariti D, Bellomi P. Inner coating layer for solid propellant rocket engines/United States Patent. US 11,473,529 B2; Oct. 18, 2022. https://patentimages.storage.googleapis.com/10/47/e0/1b4f495a3af05e/US11473529.pdf

Комментарии

Сообщения не найдены

Написать отзыв
Перевести