Новый подход к оценке последствий действия радиации на глаз
Новый подход к оценке последствий действия радиации на глаз
Аннотация
Код статьи
S0869587324070065-1
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Островский Михаил Аркадьевич  
Должность: академик РАН, заведующий кафедрой молекулярной физиологии биологического факультета, заведующий лабораторией физико-химических основ рецепции
Аффилиация:
Московский государственный университет имени М.В. Ломоносова
Институт биохимической физики им. Н.М. Эмануэля РАН
Фельдман Татьяна Борисовна
Должность: доктор биологических наук, ведущий научный сотрудник кафедры молекулярной физиологии биологического факультета, ведущий научный сотрудник
Аффилиация:
Московский государственный университет имени М.В. Ломоносова
Институт биохимической физики им. Н.М. Эмануэля РАН
Страницы
658-664
Аннотация
Авторы предлагают новый подход к оценке последствий воздействия ионизирующего излучения на структуры глаза. Подход основан на недавно полученных авторами совместно с сотрудниками Объединённого института ядерных исследований в Дубне результатах, согласно которым радиационное воздействие вызывает в структурах глаза – сетчатке и ретинальном пигментном эпителии – окисление содержащихся в них бисретиноидов. В результате такого окисления спектр флуоресценции бисретиноидов смещается в синюю область видимого спектра. Сдвиг спектра флуоресценции неинвазивно может быть зарегистрирован при помощи общепринятого в настоящее время в офтальмологии метода регистрации аутофлуоресценции глазного дна. Поскольку окисление бисретиноидов происходит в ходе радиационного воздействия, становится возможным практически сразу после облучения оценить степень воздействия ионизирующего излучения как на структуры глаза, так и на организм в целом. Аналога подобной неинвазивной оценки воздействия радиации на организм не существует. Предлагаемый подход может стать важным для оценки радиационной безопасности работников атомной промышленности, космонавтов, пациентов, подвергающихся протонной или гамма-терапии.
Ключевые слова
ионизирующее излучение оценка последствий действия ионизирующего излучения глаз сетчатка ретинальный пигментный эпителий бисретиноиды аутофлуоресценция глазного дна
Источник финансирования
Правительство РФ (23-Ш06-20). Министерство науки и высшего образования Российской Федерации (122041400102-9).
Классификатор
Получено
28.09.2024
Всего подписок
0
Всего просмотров
29
Оценка читателей
0.0 (0 голосов)
Цитировать   Скачать pdf

Библиография

1. Таирбеков М.Г., Петров В.М. Медико-биологические эффекты ионизирующих излучений. М.: МИФИ, 2005.

2. Yakovleva M.A., Feldman T.B., Lyakhova K.N. et al. Ionized radiation-mediated retinoid oxidation in the retina and retinal pigment epithelium of the murine eye // Radiat. Res. 2022. V. 197. P. 270–279.

3. Feldman T., Yakovleva M., Utina D. et al. Short-Term and Long-Term Effects after Exposure to ionizing radiation and visible light on retina and retinal pigment epithelium of mouse eye // Int. J. Mol. Sci. 2023. V. 24. 17049.

4. Schmitz-Valckenberg S., Holz F.G., Bird A.C. et al. Fundus autofluorescence imaging // Retina. 2008. V. 28. P. 385-409.

5. Островский М.А. Молекулярная физиология зрительного пигмента родопсина. Актуальные направления // Российский физиологический журнал им. И.М. Сеченова. 2020. Т. 106. № 4. С. 401–420.

6. Boulton M., Dontsov A., Jarvis-Evans J. et al. Lipofuscin is a photoinducible free radical generator. J. Photochem. Photobiol. B Biol. 1993, no.19, pp. 201–204.

7. Sparrow J.R., Vollmer-Snarr H.R., Zhou J. et al. A2E-epoxides damage DNA in retinal pigment epithelial cells. Vitamin E and other antioxidants inhibit A2E-epoxide formation. J. Biol. Chem. 2003, vol. 278, no. 20, pp. 18207–18213.

8. Dontsov A., Yakovleva M., Trofimova N. et al. Water-soluble products of photooxidative destruction of the bisretinoid A2E cause proteins modification in the dark. Int. J. Mol. Sci. 2022, vol. 23(3), 1534.

9. Feldman T., Ostrovskiy D., Yakovleva M. et al. Lipofuscin-mediated photic stress induces a dark toxic effect on ARPE-19 cells. Int. J. Mol. Sci. 2022, vol. 23(20), 12234.

10. Feldman T.B., Yakovleva M.A., Larichev A.V. et al. Spectral analysis of fundus autofluorescence pattern as a tool to detect early stages of degeneration in the retina and retinal pigment epithelium. Eye. 2018, vol. 32, pp. 1440–1448.

11. Bourauel L., Vaisband M., von der Emde L. et al. Spectral analysis of human retinal pigment epithelium cells in healthy and AMD eyes. Invest Ophthalmol. Vis. Sci. 2024, vol. 65, 10.

12. Schweitzer D., Gaillard E.R., Dillon J. et al. Time-resolved autofluorescence imaging of human donor retina tissue from donors with significant extramacular drusen. Invest. Ophth. Vis. Sci. 2012, vol. 53, pp. 3376–3386.

13. Schweitzer D., Quick S., Schenke S., et al. Comparison of parameters of time-resolved autofluorescence between healthy subjects and patients suffering from early AMD. Ophthalmologe. 2009, vol. 106, pp. 714–722.

14. Schweitzer D., Deutsch L., Klemm M. et al. Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy. J. Biomed. Opt. 2015, vol. 20, pp. 61106.

15. Ramm L., Jentsch S., Augsten R. et al. Fluorescence lifetime imaging ophthalmoscopy in glaucoma. Graefes. Arch. Clin. Exp. Ophthalmol. 2014, vol. 252, pp. 2025–2026.

16. Jentsch S., Schweitzer D., Schmidtke K.U. et al. Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer’s disease. Acta ophthalmologica. 2014, vol. 93, pp. 241–247.

17. Патент РФ на изобретение № 2651126 (18.04.2018): Фельдман Т.Б., Островский М.А., Яковлева М.А., Ларичев А.В., Борзенок С.А., Арбуханова П.М. Способ раннего выявления возрастной макулярной дистрофии сетчатки.

18. Патент на полезную модель № 176795 (29.01.2018): Ларичев А.В., Панченко В.Я., Островский М.А., Фельдман Т.Б. Оптическое устройство для исследования глазного дна с целью выявления возрастной макулярной дистрофии сетчатки.

19. Feldman T.B., Dontsov A.E., Yakovleva M.A. et al. Photobiology of lipofuscin granules in the retinal pigment epithelium cells of the eye: norm, pathology, age. Biophys. Rev. 2022, vol. 14, pp. 1051–1065.

20. Mao X.W., Boerma M., Rodriguez D. et al. Acute effect of low-dose space radiation on mouse retina and retinal endothelial cells. Radiat. Res. 2018, vol. 190, pp. 45–52.

21. Mao X.W., Pecaut M.J., Stodieck L.S. et al. Space flight environment induces mitochondrial oxidative damage in ocular tissue. Radiat. Res. 2013, vol. 180, pp. 340–350.

22. Mao X.W., Archambeau J.O., Kubinova L. et al. Quantification of rat retinal growth and vascular population changes after single and split doses of proton irradiation: translational study using stereology methods. Radiat. Res. 2003, vol. 160, pp. 5–13.

Комментарии

Сообщения не найдены

Написать отзыв
Перевести