Antibiotic resistance genes in pathogens of open cavities
Table of contents
Share
QR
Metrics
Antibiotic resistance genes in pathogens of open cavities
Annotation
PII
S0869587324010055-1
Publication type
Article
Status
Published
Authors
S. V. Shabunin 
Affiliation: All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy
G. A. Vostroilova
Affiliation: All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy
D. I. Shabanov
Affiliation: All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy
I. Y. Burakova
Affiliation: Voronezh State University of Engineering Technologies
Yu. D. Smirnova
Affiliation: Voronezh State University of Engineering Technologies
M. V. Gryaznova
Affiliation: Voronezh State University of Engineering Technologies
M. Y. Syromyatnikov
Affiliation:
All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy
Voronezh State University of Engineering Technologies
Pages
25-31
Abstract
The work is devoted to the study of the phenotypic and genotypic resistance to antibiotics of bacteria that cause diseases of open cavities of farm animals – mastitis and colibacteriosis. A high prevalence of antibiotic resistance genes of bacteria has been established, both in the gut of piglets and in the causative agents of cow mastitis. It is noteworthy that 38% of the identified genes in the gut microbiota were beta-lactam antibiotic resistance genes. It has been shown that all bacteria E. coli of piglets’ gut turned out to be phenotypically multiresistant. More than 88% of the causative agents of mastitis in cows were characterized by resistance to benzylpenicillin, ampicillin, lincomycin and polymyxin. At the same time, 19 varieties of antibiotic resistance genes have been identified in the causative agents of mastitis. The study of phenotypic resistance to antibiotics and the genome of pathogens of farm animals did not reveal stable correlations between them. It is necessary to conduct further active research in the field of circulation of resistance genes in livestock farms for the safety of livestock.
Keywords
болезни открытых полостей антибиотикорезистентность гены антибиотикорезистентности возбудители диско-диффузионный метод ПЦР
Acknowledgment
Ministry of Education and Science of Russia (075001X39782002).
Received
04.07.2024
Number of purchasers
0
Views
31
Readers community rating
0.0 (0 votes)
Cite   Download pdf Download JATS

References

1. Stacy A.S., Adam C.M. Gene amplification uncovers large previously unrecognized cryptic antibiotic resistance potential in E. coli // ASM J. Microbiol. Spectr. 2021. № 3. e0028921.

2. Mouiche M.M.M., Moffo F., Akoachere J.T.K. et al. Antimicrobial resistance from a one health perspective in Cameroon: a systematic review and meta-analysis // BMC Public Health. 2019. № 1. 1135.

3. Urban-Chmiel R., Marek A., Stępień-Pyśniak D. et al. Antibiotic resistance in bacteria // Antibiotics (Basel). 2022. № 8. 1079.

4. Волкова С.В. Причины возникновения и распространения факторных инфекций и незаразных болезней // Современные наукоёмкие технологии. 2007. № 12. С. 67–70.

5. Castro J., Barros M.M., Araújo D. et al. Swine enteric colibacillosis: Current treatment avenues and future directions // Front. Vet. Sci. 2022. V. 9. 981207.

6. Arbab S., Ullah H., Wang W. et al. Isolation and identification of infection-causing bacteria in dairy animals and determination of their antibiogram // J. Food Qual. 2021. V. 2021. P. 1–9.

7. Johnson J.R., Russo T.A. Molecular epidemiology of extraintestinal pathogenic Escherichia coli // EcoSal Plus. 2018. V. 8. ESP-0004–2017.

8. El-Sayed A., Kamel M. Bovine mastitis prevention and control in the post-antibiotic era // Trop. Anim. Health. Prod. 2021. № 2. 236.

9. Zadoks R.N., Middleton J.R., McDougall S. et al. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans // J. Mammary. Gland. Biol. Neoplasia. 2011. V. 16. P. 357–372.

10. Sharifi A., Sobhani K., Mahmoudi P. A systematic review and meta-analysis revealed a high-level antibiotic resistance of bovine mastitis Staphylococcus aureus in Iran // Res. Vet. Sci. 2023. V. 161. P. 23–30.

11. Olsen E.J., Christensen H., Aarestrup F.M. Diversity and evolution of blaZ from Staphylococcus aureus and coagulase-negative staphylococci // J. Ant. Chemo. 2006. № 3. P. 450–460.

12. Zhang P., Shen Z., Zhang C. et al. Surveillance of antimicrobial resistance among Escherichia coli from chicken and swine, China, 2008–2015 // Vet. Microbiol. 2017. V. 203. P. 49–55.

13. Alegría Á., Arias-Temprano M., Fernández-Natal I. et al. Molecular diversity of ESBL-Producing Escherichia coli from foods of animal origin and human patients // Int. J. Environ. Res. Public. Health. 2020. № 4. 1312.

14. Bourély C., Cazeau G., Jarrige N. et al. Co-resistance to amoxicillin and tetracycline as an indicator of multidrug resistance in Escherichia coli isolates from animals // Front. Microbiol. 2019. V. 10. 2288.

15. Bengtsson B., Greko C. Antibiotic resistance-consequences for animal health, welfare, and food production // Ups. J. Med. Sci. 2014. № 2. P. 96–102.

16. Мурленков Н.В. Проблемы и факторы развития антибиотикорезистентности в сельском хозяйстве // Биология в сельском хозяйстве. 2019. № 4. С. 11–14.

17. Pang Z., Raudonis R., Glick B.R. et al. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies // Biotechnol. Adv. 2019. № 1. P. 177–192.

18. Yuan W., Zhang Y., Riaz L. et al. Multiple antibiotic resistance and DNA methylation in Enterobacteriaceae isolates from different environments // J. Hazard. Mater. 2021. V. 402. 123822.

Comments

No posts found

Write a review
Translate