RAS PresidiumВестник Российской академии наук Herald of the Russian Academy of Sciences

  • ISSN (Print) 0869-5873
  • ISSN (Online) 3034-5200

Long-term demographic forecasting

PII
10.31857/S0869587323010048-1
DOI
10.31857/S0869587323010048
Publication type
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 1
Pages
21-35
Abstract
The results of the latest demographic forecasts from the world’s leading specialized centers (United Nations Population Division, the Wittgenstein Center for Demography and Global Human Capital, the Institute for Health Metrics and Evaluation) are considered, demonstrating a certain bias in favor of individual countries and their calculation methods. The second part of this article provides a description of a digital twin of the planet’s demographic system constructed by a Chinese−Russian team and implemented in China’s national supercomputer center. In addition, the results of some calculations carried out using this tool are described.
Keywords
демографические прогнозы агент-ориентированные модели вычислительные эксперименты.
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
18

References

  1. 1. Alkema L., Raftery A.E., Gerland P. et al. Probabilistic Projections of the Total Fertility Rate for All Countries // Demography 1. August 2011. № 48 (3). P. 815–839. https://doi.org/10.1007/s13524-011-0040-5
  2. 2. World Population Prospects 2022: Methodology of the United Nations population estimates and projections. United Nations, Department of Economic and Social Affairs, Population Division (UN DESA/POP/2022/TR/NO. 4). https://population.un.org/ wpp/Publications/Files/WPP2022_Methodology.pdf (дата обращения 24.09.2022).
  3. 3. Ševčíková H., Alkema L., Liu P. et al. (2022) bayes TFR: Bayesian Fertility Projection. R Package and documentation version 7.1-1. https://cran.r-project.org/ web/packages/bayesTFR
  4. 4. World Population Prospects 2019: Methodology of the United Nations population estimates and projections. United Nations, Department of Economic and Social Affairs, Population Division (ST/ESA/SER.A/425). https://population.un.org/wpp/Publications/Files/ WPP2019_Methodology.pdf
  5. 5. Demographic and Human Capital Scenarios for the 21st Century: 2018 assessment for 201 countries // W. Lutz, A. Goujon, Samir KC et al. (eds.). European Commission, Joint Research Centre, Publications Office of the European Union. Luxembourg, 2018. https://doi.org/10.2760/41776, EUR 29113; http://pure.iiasa.ac.at/id/eprint/15226/1/lutz_et_al_2018_ demographic_and_human_capital.pdf
  6. 6. Adam D. (2021): How far will global population rise? Researchers can’t agree // Nature. 2021. № 597. P. 462–465. https://doi.org/10.1038/d41586-021-02522-6
  7. 7. Vollset S.E., Goren E., Yuan C. et al. (2020): Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: a forecasting analysis for the Global Burden of Disease Study // The Lancet. 2020. V. 396. Is. 10258. P. 1285–1306. https://doi.org/10.1016/S0140-6736 (20)30677-2
  8. 8. Gietel-Basten S., Sobotka T. (2020) Uncertain population futures: Critical reflections on the IHME Scenarios of future fertility, mortality, migration and population trends from 2017 to 2100. https://doi.org/10.31235/osf.io/5syef
  9. 9. Henning P. (2008): Computational Evolution. https://doi.org/10.1007/978-3-540-70556-7_14
  10. 10. Makarov V.L., Bakhtizin A.R., Epstein J.M. Agent-based modeling for a complex world. 2nd edition, revised. M.: Scientific publications department, GAUGN, 2022 (a).
  11. 11. Makarov V.L., Bakhtizin A.R., Epstein J.M. Agent-based modeling for a complex world. Part 1 // Economics and Mathematical Methods. 2022 (б). № 58. P. 5–26. https://doi.org/10.31857/S042473880018970-6
  12. 12. Макаров В.Л., Бахтизин А.Р., Ильин Н.И. Моделирование и оценка национальной силы России // Экономические стратегии. 2020. № 2 (168). С. 6–19. https://doi.org/10.33917/es-2.168.2020.6-19
  13. 13. Peng D., Zhenwu Z., Wei C. The Centennial Development Trend of China’s Population Aging) // Population Research. 2005. V. 29. № 6. P. 90–93 (Chinese).
  14. 14. Zhenwu Z., Jiaju C., Long L. 2015~2100. Future Trends of China’s Population and Aging: 2015~2100) // Population Research. V. 41. № 4. July 2017. P. 60–71 (Chinese).
  15. 15. Wei Z., Shanjun L., Kai C. Characteristics and Trends of Population Aging in China and Potential Impact on Economic Growth // Quantitative and Technical Economics Research. 2014. № 31 (08). P. 3–20 (Chinese).https://doi.org/10.13653/j.cnki.jqte.2014.08.001
  16. 16. Bijak J., Higham P.A., Hilton J. et al. (2022): Towards Bayesian Model-Based Demography. Agency, Complexity and Uncertainty in Migration Studies // Methodos Series. 2022. V. 17. Cham: Springer. https://doi.org/10.1007/978-3-030-83039-7
  17. 17. Bell A.R., Calvo-Hernandez C., Oppenheimer M. Migration, Intensification, and Diversification as Adaptive Strategies // Socio-Environmental Systems Modelling. 2019. № 1. P. 16102. https://doi.org/10.18174/sesmo.2019a16102
  18. 18. Lim D.K. A Political, Economic and Social Agent Based Model of Migration (MAPES) // UCLA. 2019. ProQuest ID: Lim_ucla_0031D_18154. Merritt ID: ark:/13030/m53n75w7. Retrieved from https://escholarship.org/uc/item/9r82j9gt
  19. 19. Marini M., Chokani N., Abhari R.S. Agent-Based Model Analysis of Impact of Immigration on Switzerland’s Social Security // Int. Migration & Integration.2019. № 20. P. 787–808 (2019). https://doi.org/10.1007/s12134-018-0631-8
  20. 20. Klabunde A., Willekens F. Decision-Making in Agent-Based Models of Migration: State of the Art and Challenges // European journal of population = Revue europeenne de demographie. 2016. № 32 (1). P. 73–97. https://doi.org/10.1007/s10680-015-9362-0
  21. 21. Макаров В.Л., Бахтизин А.Р., Бекларян Г.Л. и др. Агентное моделирование социально-экономических последствий миграции при государственном регулировании занятости // Экономика и математические методы. 2022. Т. 58. № 1. С. 113–130. https://doi.org/10.31857/S042473880018960-5
  22. 22. Макаров В.Л., Бахтизин А.Р., Сушко Е.Д., Агеева А.Ф. Агент-ориентированный подход при моделировании трудовой миграции из Китая в Россию // Экономика региона. 2017. Т. 13. Вып. 2. С. 331–341.
  23. 23. Agent-Based Modelling in Population Studies: Concepts, Methods, and Applications / André Grow and Jan Van Bavel (eds). 2017. https://doi.org/10.1007/978-3-319-32283-4
  24. 24. Макаров В.Л., Нигматулин Р.И., Ильин Н.И. и др. Цифровой двойник (искусственное общество) социально-экономической системы России – платформа для экспериментов в сфере управления демографическими процессами // Экономические стратегии. 2022. № 2 (182). С. 6–19. https://doi.org/10.33917/es-2.182.2022.6-19
  25. 25. Сайт Отдела населения ООН. https://www.un.org/ development/desa/pd/content/international-migrant-stock
  26. 26. Caйт City Population. https://www.citypopulation.de/ en/china/cities/
  27. 27. Burch T.K. (2018): The Cohort-Component Population Projection: A Strange Attractor for Demographers // Model-Based Demography. Demographic Research Monographs. Springer, Cham, 2018. https://doi.org/10.1007/978-3-319-65433-1_10
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library