Президиум РАНВестник Российской академии наук Herald of the Russian Academy of Sciences

  • ISSN (Print) 0869-5873
  • ISSN (Online) 3034-5200

ПЕРСОНАЛИЗИРОВАННЫЕ МАТЕМАТИЧЕСКИЕ МОДЕЛИ КАК ДИАГНОСТИЧЕСКИЙ И ПРОГНОСТИЧЕСКИЙ ИНСТРУМЕНТ КЛИНИЦИСТА

Код статьи
S0869587325080028-1
DOI
10.31857/S0869587325080028
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том / Номер выпуска 8
Страницы
15-29
Аннотация
В статье, подготовленной на основе научного доклада автора на заседании президиума РАН, представлены итоги десятилетнего сотрудничества математиков и клиницистов в ходе междисциплинарных проектов, а также результаты, полученные в рамках недавно завершённого проекта РНФ "Новые математические методы и технологии в актуальных задачах геофизики и биомеханики". Полученные результаты помогут усовершенствовать диагностику ишемической болезни сердца, гиперпрессии надколенника и шейно-плечевого синдрома, а также в планировании операций по реконструкции аортального клапана и коррекции врождённого порока сердца. На базе накопленного опыта в решении междисциплинарных задач предлагаются пути повышения эффективности взаимодействия клиницистов и математиков.
Ключевые слова
математическое моделирование персонализированная модель система поддержки принятия врачебных решений
Дата публикации
17.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
15

Библиография

  1. 1. Vassilevski Yu., Olshanskii M., Simakov S. et al. Personalized computational hemodynamics: models, methods, and applications for vascular surgery and antitumor therapy. Academic Press, 2020.
  2. 2. Василевский Ю.В., Симаков С.С., Гамилов Т.М. и др. Персонализация математических моделей в кардиологии: трудности и перспективы // Компьютерные исследования и моделирование. 2022. №. 4. С. 911–930. @@Vassilevski Yu.V., Simakov S.S., Gamilov T.M. et al. Personalization of mathematical models in cardiology: obstacles and perspectives // Computer research and modeling. 2022, no. 4, pp. 911–930. (In Russ.)
  3. 3. Новые математические методы и технологии в актуальных задачах геофизики и биомеханики. Карточка проекта, поддержанного РНФ. https://rscf.ru/prjcard_int?21-71-30023 @@New mathematical methods and technologies in topical problems of geophysics and biomechanics. A card of a project supported by the Russian Science Foundation. (In Russ.)
  4. 4. Основные результаты деятельности лаборатории “Вычислительные технологии геофизики и биомеханики”. https://www.inm.ras.ru/research/biogeo/#5 @@The main results of the laboratory “Computational Technologies of Geophysics and Biomechanics” (In Russ.)
  5. 5. Федеральная служба государственной статистики. https://rosstat.gov.ru/compendium/document/13269 @@Federal State Statistics Service. (In Russ.)
  6. 6. Osnabrugge R.L.J. et al. Aortic stenosis in the elderly: Disease prevalence and number of candidates for transcatheter aortic valve replacement: A meta-analysis and modeling study // J. Am. Coll. Cardiol. 2013, vol. 62, no. 11, pp. 1002–1012.
  7. 7. Du Y. et al. Natural history observations in moderate aortic stenosis // BMC Cardiovasc. Disord. 2021, vol. 21, no. 108, pp. 1–10. @@Фальковский Г.Э., Крупянко С.М. Сердце ребёнка. Книга для родителей о врождённых пороках сердца. М.: Никея, 2014.
  8. 8. Falkovsky G.E., Krupyanko S.M. The heart of a child. A book for parents about congenital heart defects. Moscow: Nikea, 2014. (In Russ.)
  9. 9. Smith B.E., Selfe J., Thacker D. et. al. Incidence and prevalence of patellofemoral pain: A systematic review and meta-analysis // PLoS One. 2018, vol. 13 (1), e0190892.
  10. 10. Kamat Y., Prabhakar A., Shetty V., Naik A. Patellofemoral joint degeneration: A review of current management // J. Clin. Orthop. Trauma. 2021, vol. 24, 101690.
  11. 11. Simon J. et al. Is there a neck-shoulder syndrome? // Glob. J. Anesth. Pain Med. 2019, vol. 1 (1), pp. 1–5.
  12. 12. Pribicevic M. The epidemiology of shoulder pain: a narrative review of the literature // Pain in Perspective. InTech, 2012.
  13. 13. Копылов Ф.Ю., Быкова А.А., Василевский Ю.В., Симаков С.С. Роль измерения фракционированного резерва кровотока при атеросклерозе коронарных артерий // Терапевтический архив. 2015. № 9. С. 106–113. @@Kopylov F.Yu., Bykova A.A., Vassilevski Yu.V., Sima­kov S.S. Role of measurement of fractional flow reserve in coronary artery atherosclerosis // Therapeutic archive (Terapevticheskiy arkhiv). 2015, no. 9, pp. 106–113. (In Russ.)
  14. 14. Simakov S.S., Gamilov T.M., Liang F., Kopylov P.Yu. Computational analysis of haemodynamic indices in synthetic atherosclerotic coronary networks // Mathematics. 2021, no. 9, 2221.
  15. 15. Vassilevski Yu.V., Gamilov T.M., Danilov A.A. et al. A web-based non-invasive estimation of fractional flow reserve (ffr): models, algorithms, and application in diagnostics // Trends in biomathematics: mode­ling epidemiological, neuronal, and social dynamics. ­BIOMAT-2022. Springer, Cham, 2023. Pp. 305–316.
  16. 16. Danilov A.A., Gamilov T.M., Liang F. et al. Myocardial perfusion segmentation and partitioning methods in personalized models of coronary blood flow // Russian Journal of Numerical Analysis and Mathematical Modelling. 2023, vol. 38 (5), pp. 293–302.
  17. 17. Gamilov T., Danilov A., Chomakhidze P. et. al. Computational analysis of hemodynamic indices in multivessel coronary artery disease in the presence of myocardial perfusion dysfunction // Computation. 2024, vol. 12 (6), 110.
  18. 18. Ozaki S. Aortic valve reconstruction using self-developed aortic valve plasty system in aortic valve disease // Interact. Cardiovasc. Thorac. Surg. 2011, vol. 12 (4), pp. 550–553.
  19. 19. Liogky A.A. Computational mimicking of surgical leaflet suturing for virtual aortic valve neocuspidization // Russian Journal of Numerical Analysis and Mathematical Modelling. 2022, vol. 37, no. 5, pp. 263–277.
  20. 20. Liogky A.A. Numerical issues of patient-specific assessment of reconstructed aortic valve // Lobachevskii Journal of Mathematics. 2025, vol. 46, pp. 736–749.
  21. 21. Liogky A.A., Karavaikin P.A., Salamatova V.Yu. Impact of material stiffness and anisotropy on coaptation characteristics for aortic valve cusps reconstructed from pericardium // Mathematics. 2021, no. 9, 2193.
  22. 22. Vassilevski Yu.V., Liogky A.A., Salamatova V.Yu. Application of hyperelastic nodal force method to evaluation of aortic valve cusps coaptation: thin shell vs. membrane formulations // Mathematics. 2021, no. 9, 1450.
  23. 23. Vassilevski Yu., Liogky A., Salamatova V. How material and geometrical nonlinearity influences diastolic function of an idealized aortic valve // Continuum Mech. Thermodyn. 2023, vol. 35, pp. 1581–1594.
  24. 24. Каравайкин П.А., Лёгкий А.А., Данилов А.А. и др. Математическое моделирование замыкательной функции аортального клапана после неокуспидизации // Кардиология и сердечно-сосудистая хирургия. 2022. № 4. С. 369–376. @@Karavaikin P.A., Liogky A.A., Danilov A.A. et al. Numerical assessment of aortic valve coaptation after neo-cuspidation procedure // Russian Journal of Cardiology and Cardiovascular Surgery. 2022, vol. 15 (4), pp. 369–376. (In Russ.)
  25. 25. Sergeyev Ya., Strongin R., Daniela L. Introduction to global optimization exploiting space-filling curves. Springer Science & Business Media, 2013.
  26. 26. Dobroserdova T.K., Yurpolskaya L.A., Vassilevski Yu.V., Svobodov A.A. Patient-specific input data for predictive modelling of the Fontan procedure // Math. Model. Nat. Phenom. 2024, vol. 19, 16.
  27. 27. Dobroserdova T.K., Vassilevski Yu.V., Simakov S.S. et al. Two-scale haemodynamic modelling for patients with Fontan circulation // Russian Journal of Numerical Analysis and Mathematical Modelling. 2021, vol. 36, no. 5, pp. 267–278.
  28. 28. Isaev A.A., Dobroserdova T.K., Danilov A.A., Sima­kov S.S. Physically informed deep learning technique for estimating blood flow parameters in four-vessel junction after the Fontan procedure // Computation. 2024, vol. 12, 41.
  29. 29. Dobroserdova T.K., Isaev A.A., Danilov A.A., Sima­kov  S.S. Junction conditions for one-dimensional network hemodynamic model for total cavopulmonary connection using physically informed deep learning technique // Russian Journal of Numerical Analysis and Mathematical Modelling. 2024, vol. 39, no. 5, pp. 259–271.
  30. 30. Seth A., Hicks J.L., Uchida T.K. et. al. OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement // PLoS Comput. Biol. 2018, vol. 14 (7), e1006223.
  31. 31. Yurova A.S., Tyagunova A.I., Loginov F.B., Vassi­levski Yu.V. et al. Patellar motion and dysfunction of its stabilizers in a biomechanical model of the knee joint // Sechenov Medical Journal. 2024, vol. 15 (1), pp. 47–60.
  32. 32. Калинский E.Б., Юрова А.С., Лычагин А.В. и др. Биомеханическая модель надколенника в норме и при повреждении медиальной пателлофеморальной связки // Кафедра травматологии и ортопедии. 2024. № 2 (56). С. 45–52. @@Kalinskiy E.B., Yurova A.S., Lychagin A.V. et al. Biomechanical model of the patella in normal conditions and with rupture of the medial patellofemoral ligament // Department of Traumatology and Orthopedics. 2024, no. 2 (56), pp. 45–52. (In Russ.)
  33. 33. Yurova A.S., Garkavi A.V., Lychagin A.V. et al. Automated personalization of biomechanical knee model // International Journal of Computer Assisted Radiology and Surgery. 2024, vol. 19, pp. 891–902.
  34. 34. Yurova A.S., Salamatova V.Yu., Lychagin A.V., Vassilevski Yu.V. Automatic detection of attachment sites for knee ligaments and tendons on CT images // ­International Journal of Computer Assisted Ra­diology and Surgery. 2022, vol. 17 (2), pp. 393–402.
  35. 35. Yurova A.S., Gladkov A.O., Kalinsky E.B. et al. A biomechanical model for concomitant functioning of neck and shoulder: a pilot study // Sci. Rep. 2024, vol. 14, 31818.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека