RAS PresidiumВестник Российской академии наук Herald of the Russian Academy of Sciences

  • ISSN (Print) 0869-5873
  • ISSN (Online) 3034-5200

External-beam neutron therapy: the first domestic medical unit

PII
10.31857/S0869587324010098-1
DOI
10.31857/S0869587324010098
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 94 / Issue number 1
Pages
80-86
Abstract
Modern radiotherapy, employing traditional linear accelerators, has nearly reached its apex in terms of efficacy in treating oncological diseases. The challenge before researchers in the field of implementing cutting-edge technologies pertains to the utilization of fundamentally different therapeutic approaches, one of which is remote neutron therapy. Its salient advantages include an increased relative biological effectiveness of radiation, while the complexities of implementing specific technological solutions encompass forming a beam of the required geometry and spectral characteristics. The article delineates the key milestones in the development of the usage of fast neutron beams for remote radiotherapy, a general description of the neutron therapy complex and its primary structural components is also presented. These are currently being developed as an innovative, mass-producible medical project.
Keywords
радиотерапия относительная биологическая эффективность нейтронная терапия комплекс нейтронной терапии планирование лучевой терапии
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
98

References

  1. 1. Stone R.S., Lawrence J.H., Aebersold P.C. A Preliminary report on the Use of Fast Neutrons in the Treatment of Malignant Disease // Radiology. 1940. № 3. P. 322–327.
  2. 2. Stone R.S., Larkin J.C. The treatment of cancer with fast neutrons // Radiology. 1942. № 5. P. 608–620.
  3. 3. Catterall M. First randomized clinical trial of fast neutrons compared with photons in advanced carcinoma of the head and neck // Clin. Otolaryngol. Allied Sci. 1977. V. 2. P. 359–372.
  4. 4. Parker R.G., Berry H.C., Gerdes A.J. et al. Fast neutron beam radiotherapy of glioblastoma multiforme // Am. J. Roentgenol. 1976. № 2. P. 331–335.
  5. 5. Kaul R., Hendrickson F., Cohen L. et al. Fast neutrons in the treatment of salivary gland tumors // Int. J. Radiat. Oncol. Biol. Phys. 1981. № 12. P. 1667–1671.
  6. 6. Cohen L., Hendrickson F., Mansell J. et al. Response of sarcomas of bone and of soft tissue to neutron beam therapy // Int. J. Radiat. Oncol. Biol. Phys. 1984. V. 10. P. 821–824.
  7. 7. Tsunemoto H., Arai T., Morita S. et al. Japanese experience with clinical trials of fast neutrons // Int. J. Radiat. Oncol. Biol. Phys. 1982. № 12. P. 2169–2172.
  8. 8. Battermann J.J., Mijnheer B.J. The Amsterdam fast neutron therapy project: A final report // Int. J. Radiat. Oncol. Biol. Phys. 1986. № 12. P. 2093–2099.
  9. 9. Lindsley K.L., Cho P., Stelzer K.J. et al. Clinical trials of neutron radiotherapy in the United States // Bulletin du Cancer/Radiothérapie. 1996. Sup. 1. P. 78s–86s.
  10. 10. Gribova O.V., Musabaeva L.I., Choynzonov E.L. et al. Neutron therapy for salivary and thyroid gland cancer // AIP Conference Proceedings. 2016. V. 1760. P. 200–210.
  11. 11. Mardynsky Y.S., Sysoyev A.S., Andreyev V.G., Gulidov I.A. Preliminary results of clinical application of reactor fast neutrons in radiation and combined therapy of patients with laryngeal carcinoma // Strahlenther Onkol. 1991. № 3. P. 169–171.
  12. 12. Jones B. Clinical radiobiology of fast neutron therapy: What was learnt? // Front Oncol. 2020. V. 10. 1537.
  13. 13. Gordon K., Gulidov I., Fatkhudinov T. et al. Fast and Furious: Fast Neutron Therapy in Cancer Treatment // International Journal of Particle Therapy. 2022. № 2. P. 59–69.
  14. 14. Gulidov I., Koryakin S., Fatkhudinov T., Gordon K. External Beam Fast Neutron Therapy: Russian Clinical Experience and Prospects for Further Development // Int. J. Radiat. Oncol. Biol. Phys. 2023. № 4. P. 821–827.
  15. 15. Goodhead D.T. Neutrons are forever! Historical perspectives // Int. J. Radiat. Biol. 2019. V. 95. P. 957–984.
  16. 16. Laramore G.E., Griffith J.T., Boespflug M. et al. Fast neutron radiotherapy for sarcomas of soft tissue, bone, and cartilage // Am. J. Clin. Oncol. 1989. V. 12. P. 320–326.
  17. 17. Timoshchuk M.A., Dekker P., Hippe D.S. et al. The efficacy of neutron radiation therapy in treating salivary gland malignancies // Oral Oncol. 2019. V. 88. P. 51–57.
  18. 18. Frey K., Bauer J., Unholtz D. et al. TPS(PET) – A TPS-based approach for in vivo dose verification with PET in proton therapy // Phys. Med. Biol. 2013. № 1. P. 1–21.
  19. 19. Schneider W., Bortfeld T., Schlegel W. Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions // Phys. Med. Biol. 2000. № 2. P. 459–478.
  20. 20. Gordon K.B., Saburov V.O., Koryakin S.N. et al. Calculation of the Biological Efficiency of the Proton Component from 14.8 MeV Neutron Irradiation in Computational Biology with Help of Video Cards // Bulletin of Experimental Biology and Medicine. 2022. V. 173. P. 281–285.
  21. 21. Chernukha A.E., Saburov V.O., Adarova A.I. et al. Three-Dimensional Models and Complimentary Geometry for Dose Evaluation in NG-24MT Based Neutron Radiotherapy Cabinet // Izvestiya vuzov. Yadernaya Energetika. 2022. V. 3. P. 158–167.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library