- Код статьи
- 10.31857/S0869587323090037-1
- DOI
- 10.31857/S0869587323090037
- Тип публикации
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 93 / Номер выпуска 9
- Страницы
- 895-904
- Аннотация
- Ограниченность запасов ископаемого топлива и отрицательное влияние продуктов его сгорания на экологию – две актуальные проблемы современности. В качестве возможного их решения рассматривается освоение альтернативных источников энергии, среди которых наиболее доступна энергия Солнца. Приобретение навыков эффективного и экологичного её использования путём создания искусственных фотосинтезирующих систем, имитирующих процессы природного фотосинтеза, а также применение искусственного фотосинтеза для производства биотоплива могут способствовать выходу из сложившейся ситуации.
- Ключевые слова
- альтернативные виды энергии биоводород биофотолиз искусственный фотосинтез солнечные ячейки.
- Дата публикации
- 16.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 19
Библиография
- 1. Nath K., Najafpour M.M., Voloshin R.A. et al. Photobiological hydrogen production and artificial photosynthesis for clean energy: from bio to nanotechnologies // Photosynthesis Research. 2015. V. 126 (2–3). P. 237–247.
- 2. Antal T.K., Matorin D.N., Kukarskikh G.P. et al. Pathways of hydrogen photoproduction by immobilized Chlamydomonas reinhardtii cells deprived of sulfur // International Journal of Hydrogen Energy. 2014. V. 39. P. 18194–18203.
- 3. Purchase R.L., De Groot H.J.M. Biosolar cells: Global artificial photosynthesis needs responsive matrices with quantum coherent kinetic control for high yield // Interface Focus. 2015. V. 5. P. 20150014.
- 4. Rahman A., Farrok O., Haque Md.M. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic // Renewable and Sustainable Energy Reviews. 2022. V. 161. P. 112279.
- 5. 13 Nov Hydropower explained: hydropower and the environment. US Energy Information Administration, 2019. https://www.eia.gov/energyexplained/hydropower/ hydropower-and-the-environment.php (дата обращения 10 февраля 2020).
- 6. Nazir M.S., Mahdi A.J., Bilal M. et al. Environmental impact and pollution-related challenges of renewable wind energy paradigm – a review // Science of the Total Environment. 2019. V. 683. P. 436–444.
- 7. Nazir M.S., Ali N., Bilal M., Iqbal H.M. Potential environmental impacts of wind energy development: a global perspective // Current Opinion in Environmental Science and Health. 2020. V. 13. P. 85–90.
- 8. May R., Nygård T., Falkdalen U. et al. Paint it black: efficacy of increased wind turbine rotor blade visibility to reduce avian fatalities // Ecology and Evolution. 2020. V. 10. P. 8927–8935.
- 9. Bravi M., Basosi R. Environmental impact of electricity from selected geothermal power plants in Italy // Journal of Cleaner Production. 2014. V. 66. P. 301–308.
- 10. Allakhverdiev S.I., Kreslavski V.D., Thavasi V. et al. Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems // Photochemical and Photobiological Sciences. 2009. V. 8. P. 148–156
- 11. Tawalbeh M., Al-Othman A., Kafiah F. et al. Environmental impacts of solar photovoltaic systems: a critical review of recent progress and future outlook // Science of the Total Environment. 2021. V. 759. Article number 143528.
- 12. Musazade E., Voloshin R., Brady N. et al. Biohybrid solar cells: Fundamentals, progress, and challenges // Journal of Photochemistry and Photobiology. C: Photochemistry Reviews. 2018. V. 35. P. 134–156.
- 13. Hallenbeck P.C., Lazaro C.Z., Sagir E. Photosynthesis and hydrogen from photosynthetic microorganisms. Microalgal Hydrogen Production: Achievements and Perspectives / Seibert M. and Torzillo G., eds. European Society for Photobiology, 2018. Chapter 1. P. 3–30.
- 14. Allakhverdiev S.I., Kreslavski V.D., Thavasi V. et al. Photosynthetic energy conversion: hydrogen photoproduction by natural and biomimetic systems / Mukherjee A., ed. Biomimetics, learning from nature. Croatia: In-Tech, Vukovar, 2010. P. 49–76.
- 15. Ben-Shem A., Frolow F., Nelson N. Evolution of photosystem I – From symmetry through pseudosymmetry to asymmetry // FEBS Letters. 2004. V. 564 (3) P. 274–280.
- 16. Voloshin R.A., Brady N.G., Zharmukhamedov S.K. et al. Influence of osmolytes on the stability of thylakoid based dye sensitized solar cells // International Journal of Energy Research. Wiley Online Library. 2019. V. 43 (14). P. 8878–8889.
- 17. Voloshin R.A., Bedbenov V.S., Gabrielyan D.A. et al. Optimization and characterization of TiO2-based solar cell design using diverse plant pigments // International Journal of Hydrogen Energy. 2017. V. 42 (12). P. 8576–8585.
- 18. Miyachi M., Ikehira S., Nishiori D. et al. Photocurrent Generation of Reconstituted Photosystem II on a Self-Assembled Gold Film // Langmuir. 2017. V. 33 (6). P. 1351–1358.
- 19. Adam P., Heunemann F., Bussche Ch. et al. Hydrogen infrastructure – the pillar of energy transitions the practical conversion of long-distance gas networks to hydrogen operation // Whitepaper. 2020. V. 32. P. 1–25.
- 20. Радченко Р.В., Мокрушин А.С., Тюльпа В.В. Водород в энергетике. Екатеринбург: Изд-во Урал. ун-та, 2014.
- 21. da Silva Veras T., Mozer T.S., da Silva César A. Hydrogen: trends, production and characterization of the main process worldwide // International Journal of Hydrogen Energy. 2017. V. 42 (4). P. 2018–2033.
- 22. Govindjee, Kern J.F., Messinger J., Whitmarsh J. Photosystem II // Encyclopedia of Life Sciences (ELS). Chichester: John Wiley & Sons, Ltd., 2010. P. 1–15.
- 23. Аллахвердиев С.И. Горизонты искусственного фотосинтеза // Горизонты биофизики. Т. 2 / Под ред. А.Б. Рубина. М.–Ижевск: Институт компьютерных исследований, 2022. С. 9–47.
- 24. Аллахвердиев С.И. Солнце в зелёной ячейке. Глобальная энергия. 2021. https://globalenergyprize.org/ru/2021/10/19/solnce-v-zelenoj-yachejke/ (дата обращения: 21.07.2023).
- 25. Allakhverdiev S.I., Thavasi V., Kreslavski V.D. et al. Photosynthetic hydrogen production // Journal of Photochemistry and Photobiology: C. 2010. V. 11. P. 87–99.
- 26. Najafpour M.M., Renger G., Hołyńska M. et al. Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures // Chemical Reviews. 2016. V. 116 (5). P. 2886–2889.
- 27. Климов В.В., Аллахвердиев С.И., Деметер Ш., Красновский А.А. Фотовосстановление феофитина в фотосистеме 2 хлоропластов в зависимости от окислительно-восстановительного потенциала среды // Докл. АН СССР. 1979. Т. 49. С. 227–230.
- 28. Климов В.В., Аллахвердиев С.И., Красновский А.А. Сигнал ЭПР при фотовосстановлении феофитина в реакционных центрах фотосистемы 2 хлоропластов // Докл. АН СССР. 1979. Т. 249. С. 485–488.
- 29. Allakhverdiev S.I., Klimov V.V. Photoreduction of NADP(+) in photosystem II of higher plants: requirement for manganese // Zeitschrift für Naturforschung: C. 1992. V. 47 (1–2). P. 57–62.
- 30. Mal’tsev S.V., Allakhverdiev S.I., Klimov V.V., Krasnovsky A.A. Hydrogen evolution by subchloroplast preparations of photosystem II from pea and spinach // FEBS Letters. 1988. V. 240 (1–2). P. 1–5.
- 31. Klimov V.V., Allakhverdiev S.I., Shuvalov V.A., Krasnovsky A.A. Effect of extraction and readdition of manganese on light reactions of photosystem II preparations // FEBS Letters. 1982. V. 148 (2). P. 307–312.
- 32. Аллахвердиев С.И., Клеваник А.В., Климов В.В. и др. Определение числа атомов марганца, функционирующих в донорной части фотосистемы 2 // Биофизика. 1983. Т. 28. № 1. С. 5–8.
- 33. Feizi H., Bagheri R., Song Z. et al. Cobalt/Cobalt Oxide Surface for Water Oxidation // ACS Sustainable Chemistry & Engineering. 2019. V. 7 (6). P. 6093–6105.
- 34. Kalantarifar S., Allakhverdiev S.I., Najafpour M.M. Water oxidation by a nickel complex: new challenges and an alternative mechanism // International Journal of Hydrogen Energy. 2020. V. 45 (58). P. 33563–33573.
- 35. Khosravi M., Feizi H., Haghighi B. et al. Photoelectrochemistry of manganese oxide/mixed phase titanium oxide heterojunction // New Journal of Chemistry. 2020. V. 44 (8). P. 3514–3523.
- 36. Madadkhani S., Allakhverdiev S.I., Najafpour M.M. An iridium-based nanocomposite prepared from an iridium complex with a hydrocarbon-based ligand // New Journal of Chemistry. 2020. V. 44 (36). P. 15636–15645.
- 37. Mehrabani S., Bikas R., Zand Z. et al. Water splitting by a pentanuclear iron complex // International Journal of Hydrogen Energy. 2020. V. 45 (35). P. 17434–17443.
- 38. Najafpour M.M., Ghobadi M.Z., Sarvi B. et al. Polypeptide and Mn-Ca oxide: Toward a biomimetic catalyst for water-splitting systems // International Journal of Hydrogen Energy. 2016. V. 41 (12). P. 5504–5512.
- 39. Najafpour M.M., Madadkhani S., Akbarian S. et al. A new strategy to make an artificial enzyme: Photosystem II around nanosized manganese oxide // Catalysis Science & Technology. 2017. V. 7. P. 4451–4461.
- 40. Najafpour M.M., Madadkhani S., Akbarian S. et al. Links Between peptide and Mn oxide: Nano-sized manganese oxide embedded in a peptide matrix // New Journal of Chemistry. 2018. V. 42 (12). P. 10067–10077.
- 41. Najafpour M.M., Mehrabani S., Bagheri R. et al. An aluminum/cobalt/iron/nickel alloy as a precatalyst for water oxidation // International Journal of Hydrogen Energy. 2018. V. 43 (4). P. 2083–2090.
- 42. Safdari T., Akbari N., Valizadeh A. et al. Iron-nickel oxide: a promising strategy for water-oxidation // New Journal of Chemistry. 2020. V. 44 (4). P. 1517–1523.
- 43. Najafpour M.M., Zaharieva I., Zand Z. et al. Water-oxidizing complex in Photosystem II: Its structure and relation to manganese-oxide based catalysts // Coordination Chemistry Reviews. 2020. V. 409. Article number 213183.
- 44. Allakhverdiev S.I., Karacan M.S., Somer G. et al. Binuclear manganese (III) complexes as electron donors in D1/D2/cytochrome b559 preparations isolated from spinach photosystem II membrane fragments // Z. Naturforsch. C. 1994. V. 49 (9–10). P. 587–592.
- 45. Allakhverdiev S.I., Karacan M.S., Somer G. et al. Reconstitution of the water-oxidizing complex in manganese-depleted photosystem II complexes by using synthetic binuclear manganese complexes // Biochemistry. 1994b. V. 33 (40). P. 12210–12214.
- 46. Nagata T., Nagasawa T., Zharmukhamedov S. et al. Reconstitution of the water-oxidizing complex in manganese-depleted photosystem II preparations using synthetic binuclear Mn(II) and Mn(IV) complexes: production of hydrogen peroxide // Photosynthesis Research. 2007. V. 93. P. 133–138.
- 47. Nagata T., Zharmukhamedov S.K., Khorobrykh A.A. et al. Reconstitution of the water-oxidizing complex in manganese-depleted photosystem II preparations using synthetic Mn-complexes: a fluorine-19 NMR study of the reconstitution process // Photosynthesis Research. 2008. V. 98. P. 277–284.
- 48. Vitukhnovskaya L.A., Zharmukhamedov S.K., Najafpour M.M. et al. Electrogenic reactions in Mn-depleted photosystem II core particles inthe presence of synthetic binuclear Mn complexes // Biochemical and Biophysical Research Communications. 2018. V. 503 (1). P. 222–227.
- 49. Mousazade Y., Najafpour M.M., Bagheri R. et al. A manganese(II) phthalocyanine under water-oxidation reaction: new findings // Dalton Transactions. 2019. V. 48 (32). P. 12147–12158.
- 50. Chou L.Y., Liu R., He W. et al. Direct oxygen and hydrogen production by water splitting using a robust bioinspired manganese oxooligomer complex/tungsten oxide catalytic system // International Journal of Hydrogen Energy. 2012. V. 37. P. 8889–8896.
- 51. Najafpour M.M., Salimi S., Madadkhani S. et al. Nanostructured manganese oxide on silica aerogel: a new catalyst toward water oxidation // Photosynthesis Research. 2016. V. 130 (1–3). P. 225–235.
- 52. Maitra U., Lingampalli S.R., Rao C.N.R. Artificial photosynthesis and the splitting of water to generate hydrogen // Current Science. 2014. V. 106. P. 518–527.
- 53. Bolatkhan K., Kossalbayev B.D., Zayadan B.K. et al. Hydrogen production from phototrophic microorga-nisms: Reality and perspectives // International Journal of Hydrogen Energy. 2019. V. 44 (12). P. 5799–5811.
- 54. Бозиева А.М., Заднепровская Е.В., Аллахвердиев С.И. Получение биоводорода: последние достижения и современное состояние // Глобальная энергия. 2022. Т. 28 (4). С. 59–78.
- 55. Sadvakasova A.K., Akmukhanova N.R., Bolatkhan K. et al. Search for new strains of microalgae-producers of lipids from natural sources for biodiesel production // International Journal of Hydrogen Energy. 2019. V. 44 (12). P. 5844–5853.
- 56. Das D., Veziroglu T.N. Hydrogen production by biological processes: a survey of literature // International Journal of Hydrogen Energy. 2001. V. 26 (1). P. 13–28.
- 57. Nagarajan D., Lee D.J., Kondo A., Chang J.S. Recent insights into biohydrogen production by microalgae – from biophotolysis to dark fermentation // Bioresource Technology. 2017. V. 227. P. 373–387.
- 58. Antal T.K., Matorin D.N., Kukarskikh G.P. et al. Pathways of hydrogen photoproduction by immobilized Chlamydomonas reinhardtii cells deprived of sulfur // International Journal of Hydrogen Energy. 2014. V. 39. P. 18194–18203.
- 59. Kossalbayev B.D., Tomo T., Zayadan B.K. et al. Determination of the potential of cyanobacterial strains for hydrogen production // International Journal of Hydrogen Energy. 2020. V. 45. P. 2627–2639.
- 60. Taikhao S., Junyapoon S., Incharoensakdi A., Phunpruch S. Factors affecting biohydrogen production by unicellular halotolerant cyanobacterium Aphanothece halophytica // Journal of Applied Phycology. 2013. 25. P. 575–585.
- 61. Li H., Zhang L., Shu L. et al. Sustainable photosynthetic H2-production mediated by artificial miRNA silencing of OEE2 gene in green alga Chlamydomonas reinhardtii // International Journal of Hydrogen Energy. 2015. V. 40 P. 5609–5616.
- 62. Eroglu E., Melis A. Microalgal hydrogen production research // International Journal of Hydrogen Energy. 2016. V. 41. P. 12772–12798.
- 63. Bandyopadhyay A., Stöckel J., Min H. et al. High rates of photobiological H2 production by a cyanobacterium under aerobic conditions // Nature Communications. 2010. V. 1. Article number 139.
- 64. Kossalbayev B.D., Kakimova A.B., Bolatkhan K. et al. Biohydrogen production by novel cyanobacterial strains isolated from rice paddies in Kazakhstan // International Journal of Hydrogen Energy. 2022. V. 47. P. 16440–16453.
- 65. Bozieva A.M., Khasimov M.Kh., Voloshin R.A. et al. New cyanobacterial strains for biohydrogen production // International Journal of Hydrogen Energy. 2023. V. 48 (21). P. 7569–7581.